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Nano what?!...

● Manipulation of matter at atomic/molecular 
scales (1 to 100 nm)

– Smallest life: Mycoplasma bacteria (200 nm)

– Smallest atom: hydrogen diameter (0.25 nm)

● Quantum effects:
– new physical properties, not miniaturised 

versions of larger devices

– Transparency, solubility, conductivity
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Growing interest

● Application fields: nano-materials, nano-
medicine agents, environment (nanofilters), 
semiconductors, smart food packaging, 
http://en.wikipedia.org/wiki/List_of_nanotechnology_applications

● Huge research effort: USA 3.7 billion dollars,  
EU 1.2 billion and Japan 0.75 billions (2012)
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Top-down vs bottom-up Design

● Top-down: control on placement of system 
components (e.g. Photolitography mask  to 
induce a pattern)

● Bottom-up: Rely on local molecular 
interactions to build large-scale structures

● Example:wooden form vs building a wall 
assembling stones

● Biology inspired (...please avoid “grey goo” 
due exponentially self-replicant nanorobots)
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In Computer Design...

● Top-down is the traditional approach: layout 
mask to specify the computer system structure 
used by semiconductor industry to place 
components

● Bottom-up: specify only nano components, 
NOT their placement. The same properties of 
each component will allow them attach each 
other, so the system can be defined as “self-
assembled” 
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Self-Assembly

● Using bottom-up approach, elements self 
assemble to form a complex system

● Trivial:Random SA (everyone can be 
everywhere...) → NO imposed order = little 
customizable complexity (given N 
components, all random system have similar 
behaviour)

● Programmable SA: specify how components 
attach to one another, BUT NO where the will 
be placed
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DNA self-assembly

● Sequence of nucleobases A, G, T, C
● Stable structure when complementary 

nucleobase sequences match, that is:
–  A pairs with T 

–  G pairs with C

● The result is an helix of 2nm diameter
● Larger blocks of assembled DNA sequences, 

called “motifs” can self-assembled to create 
more complex structures
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Simple 4-arm junction
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...more complex structures
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Placing nano-devices

● DNA Tag: a particular sequence of 
nucleobases (eg GATTACA, TCGTAAT, etc..)

● Nano devices: nanotubes wires and CNFET 
transistor, each with specific DNA tags

● DNA structures can provide a “scaffold” onto 
which nano devices can be attached binding 
to complementary DNA tags

● Design = Specify the appropriate DNA tags in 
order to attach nano device terminals
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Placing nano-devices

● Example: 2-input NAND → 10 terminals to 
attach (transistor + wires)

● Note that a basic useful circuit could consist of 
thousands NAND gates, that is 10.000s 
terminals to bind

● Adding complexity:
– In CMOS: larger masks

– In DNA SA: more different unique tags

● How many tags ? 
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How many tags ?

● Ideally: choose where every single transistor 
will be placed-> a different tag for each 
terminal

● More different unique tags (of a given lenght):
– more customizable complexity

– Tags similar to each other-> ... more 
probability of improper matching (similar to 
“hamming-distance”)

● Conflicting goals: defects rate vs complexity
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CMOS vs CNFETs
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Defect tolerance

● Functional: a devices does not behave like it 
should (a transistor does not conduct)

● Positional: A device is placed where it 
shouldn't. Typical of DNA self-assembly

● CMOS doesn't have much defect tolerance
● Instead, in self-assembly, the more complexity 

we need → the more unique tags → more 
tolerance needed
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Interconnecting nodes

● The size (max 10.000 CNFETs) of blocks is 
limited by the DNA grid size, due the “defect 
tolerance/number of tags” conflict discussed 
above

● So, to increase computing capacity, multiple 
blocks must be interconnected

● System architects should explicitly partition the 
designs in smaller functional nodes
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Design flow

● Architectural description
● Behavioural simulator to verify the high-level 

procedural model (e.g. System C)
● Gate-level modules implementing the system
● Transistor layout is verified
● DNA sequences (using a prefixed number of 

unique tags)
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Challenges

● Small-scall control: nodes with limited space, 
communication, coordination

● Large-scale randomness: node  placement, 
orientation, connectivity

● High defect rates
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Architectural Implications

● Partition functionalities in order to exploit 
multiple small nodes

● Execution model (appropriate instruction set)
● Memory system (distributed accross nodes)
● Routing: limited space for complex dynamic 

routing, no guarantees on node placement and 
connectivity to use static routing

● Interfacing to microscale
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Nodes: 
● processing (P),
● memory (M), 
● memory ports(M*),
● Anchor via to 

microscale (A-V)

System Model
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NANA system features

● Each node generates its own clock (e.g. 
10GHz, still pessimistic looking at CNFETs)

● Accumulator based ISA to minimize 
coordination among nodes

● Packets contain operations  and operands in 
the appropriate order

● A processing node performs the operation and 
removes operands 

● http://www.cs.duke.edu/~alvy/papers/nana.pdf
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Packet format
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Finding resources for execution

● Packets travel in the network and must be able 
find the appropriate node type:  

– without deadlocking

– In a irregular topology of a randomly 
interconnected sea of nodes

– Limited node size → no large buffers or 
complex circuitry

● Must exclude hardware hungry solutions: 
virtual channels, resource redundancy, 
dynamic recovery
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Segment-based Routing
http://www.disca.upv.es/jflich/papers/ipd
ps06.pdf

● Partitions the topology into different 
disjoint paths called “segments”

● Each segment connects two other 
segments (i.e. starts/ends into nodes of 
another segment)

● Deadlock freedom from turn-prohibition: 
prohibition of a turn for each segment

● Topology agnostic, but …require 
topology graph as input!

http://www.disca.upv.es/jflich/papers/ipdps06.pdf
http://www.disca.upv.es/jflich/papers/ipdps06.pdf
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Nanoxim:Distributed Segment-based 
Routing (DiSR)

● DiSR: same properties as SR 
● No topology graph required
● Each node separately contributes to a 

distributed process that estabilishes segments
● Special packets to discover the network 

topology and impose segments structures
● SystemC opensource platform:

http://code.google.com/p/nanoxim/
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Proposed Activities

● Comparison against simple Up*/Down* 
spanning tree based

● Quality measures: % of coverage at different 
node defect rates

● Logic required at each node
● Topology singularities
● Parallel Applications  
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Node Coverage
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Setup Latency
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